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Abstract—IoT systems are rapidly adopted in various domains,
from embedded systems to smart homes. Despite their growing
adoption and popularity, there has been no thorough study to
understand IoT development challenges from the practitioners’
point of view. We provide the first systematic study of bugs
and challenges that IoT developers face in practice, through
a large-scale empirical investigation. We collected 5,565 bug
reports from 91 representative IoT project repositories and
categorized a random sample of 323 based on the observed
failures, root causes, and the locations of the faulty components.
In addition, we conducted nine interviews with IoT experts to
uncover more details about IoT bugs and to gain insight into IoT
developers’ challenges. Lastly, we surveyed 194 IoT developers
to validate our findings and gain further insights. We propose
the first bug taxonomy for IoT systems based on our results.
We highlight frequent bug categories and their root causes,
correlations between them, and common pitfalls and challenges
that IoT developers face. We recommend future directions for
IoT areas that require research and development attention.

Index Terms—Internet of Things, Software Engineering, Min-
ing Software Repositories, Empirical Study

I. INTRODUCTION

Internet of Things (IoT) envisions a self-configuring, adap-
tive, and complex network that interconnects smart objects,
embedded with sensors or actuators, to the internet through
the use of communication protocols [1]. By 2020, Gartner
estimates that smart inter-connected devices will outnumber
humans 4-to-1 [2] and it is estimated that by 2025, there
will be over 75.44 billion smart things worldwide [3]]. These
smart “things” can be programmed and remotely controlled
to collect their data or to control their actions. Programming
physical devices with constraint resources, dealing with di-
verse network protocols, and the integration of diverse entities
in IoT systems, add unique characteristics to the challenges of
developing such systems. Driven by the above considerations,
the concept of bugs in [oT is more complicated than traditional
software.

Previously, some studies have investigated the characteris-
tics of 10T repositories [4]], and discussed some challenges of
IoT systems [S]-[7]]. Existing research on bug categorization
is limited to specific sub-domains of IoT such as bugs in
smart aquaculture systems [8]], bugs in IoT device operating
systems [9], or bugs uncovered during the deployment of IoT
systems [J5]].

While more mature software domains have benefited from
empirical and qualitative studies on their bugs and developer
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challenges [10]-[12]], no such study is available for IoT to the
best of our knowledge.

In this paper, we provide a generalized and systematic
overview of bugs and developer challenges in IoT systems. In
order to do so, we mine IoT GitHub repositories and collect
(5,565) bug reports from 91 representative [oT projects. By ap-
plying Root Cause Analysis (RCA), we categorize a subset of
323 bug reports considering the observed failures, root causes,
and locations of the bugs. We propose the first taxonomy
of bugs in IoT systems, which is constructed by analyzing
these real-world IoT bugs. To complement the taxonomy and
study the challenges of IoT developers, we conducted semi-
structured interviews with nine IoT practitioners that have
hands-on experience in different layers of IoT. Lastly, we
validated our findings through an online survey that was
completed by 194 IoT developers.

The contributions of this paper are:

¢ An empirical study to understand IoT failures and their
root causes in practice

o The first [oT bug taxonomy

o An overview of state-of-the-practice challenges faced by
IoT developers

Our findings show that general development issues, device
management issues, and messaging issues are the most fre-
quent bug categories. Furthermore, the most frequent root
causes of bugs are software programming faults, semantic
faults, and dependency faults. In addition, we highlight the
challenges of IoT developers in various areas such as testing,
debugging, and dealing with heterogeneity and security in [oT.

II. BACKGROUND AND MOTIVATION

[Figure I|shows a typical architecture of an IoT system [1]],
(71, (131, [14].

Device layer. The device layer at the bottom includes smart
programmable things interacting with the physical world
through their embedded sensors and actuators. Some IoT de-
vices employ light embedded operating systems (e.g. contiki,
RIOT, TinyOS) that have support for various programming
languages allowing developers to write embedded code on top
of the device OS [[15]], while bare metal IoT devices run the
embedded code directly on their hardware processor.

Edge layer. This layer contains gateway devices with fewer
resource constraints with the ability to handle telemetry
data collection, processing, and routing locally on the edge.
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Figure 1: A typical layered architecture of IoT systems and
an example of an IoT bug

Gateway devices can handle the device-device and device-
cloud interoperability by interpreting diverse communication
protocols such as MQTT, CoAP, and HTTP [16].

Cloud layer. Remote IoT cloud servers accumulate and pro-
cess all telemetry data, and communicate with heterogeneous
IoT devices to control and monitor them remotely. IoT cloud
servers rule engine lets users write automation logic between
IoT devices to define interoperability behaviours of the IoT
system [17].

Motivating example. We use a real IoT bug to motivate
our study of bugs and developer challenges in IoT systems.
Figure |1| shows (on the right side) the steps that IoT devel-
opers have taken to find the root cause of the bug report
PYTRADFRI/135 [18]. This bug occurred in a smart home
environment where different devices should be connected to a
home automation server with the help of a gateway device.

Based on developers’ discussions, the first manifestation of
this bug happens at the application layer. A light bulb device
(D3) is mistakenly recognized as a sensor device (F;) as the
user adds it, and also the Android app crashes (F,) once it tries
to turn the light bulb off (step 1 and 2). Initially, the developers
suspected the root cause of the bug to be the incompatibility
of a gateway library with the home automation server (step
3).

However, further investigation of the failure in the edge
layer (step 4), revealed that the gateway misidentifies D3 as a
remote controller (F3). Since the gateway in this system relies
mainly on a specific format of response data from devices to
identify their types properly, potential inconsistencies of the
payload data from the subject device were also investigated
(step 5).

Also, since the device battery and distance to the gateway
could affect the pairing process, developers tried pairing in
different circumstances (step 6). After none of the candidate
causes showed as the potential reason for the bug, the root
cause was identified as an external bug in the firmware of the
G2 gateway device (step 7) and resetting both the device and
the gateway and pairing them again solved the issue (step 8).
But surprisingly F, continued to exist. After monitoring the

data that the app receives via Wireshark, the root cause of F,
was identified as a fault in the Android app code (step 9).

As we can see in this example, distribution of failures and
candidate causes in different layers, dealing with behaviours
of diverse devices such as comparing their payload, and
depending on naive debugging practices such as monitoring
network traffic, make it extremely hard for developers to
deal with IoT bugs. Despite these compelling challenges,
previous studies [5]-[9] do not take into consideration real-
world experiences of IoT developers. In this paper, we aim to
provide a systematic and generalized understanding of bugs
and challenges in IoT by mainly considering IoT developers’
experiences.

III. METHODOLOGY

Our goal is to characterize software bugs in IoT systems
and understand the challenges developers face in practice. To
this end, we address the following research questions in this
work:

e RQ1: What are the classes of bugs in IoT systems?
¢ RQ2: What challenges do IoT developers face in practice?

In order to answer these questions, we conduct an empirical
investigation consisting of two phases. In the first phase (RQ1),
we analyze 323 issues and pull requests (PR) from open-
source [oT projects. We use the findings to form the first
taxonomy of bugs in IoT systems. In the second phase (RQ2),
we conduct a qualitative study through (1) semi-structured
interviews with IoT developers to discover new categories of
bugs and challenges, (2) a survey of IoT developers to validate
the findings and gain new insights. All our quantitative and
qualitative data is available online [[19]

A. IoT Bug Categorization

Collecting bug reports. The initial step is to find repositories
that are representative of IoT projects. We employed the
“GitHub topic feature” to find IoT-related repositories. Ac-
cording to GitHub’s official website [[20], Topics are labels that
create subject-based connections between GitHub repositories.

We searched among topics with related keywords such as
"internet-of-things" and "IoT" and we added the top three top-
ics “IoT-application”, “lIoT-platform”, and “IoT-device” from
the results to our list of targeted topics. Initially, we collected
8,774 repositories using these five topics in January 2020. We
excluded repositories with less than 10 stars [21]], resulting in
1,356 repositories to consider.

To only consider valid bugs, we looked for issued bug
reports with only “closed” status and with “bug™’, “defect”,
or “error” labels. Moreover, to select only representative IoT
repositories for our study, we manually analyzed repositories
that have more than five labeled issues or more than 50
closed issues based on the information in their readme page,
issued bug reports, and their website (when available). We then
excluded projects that were not representative of IoT systems
such as user interface, documentation, or outdated repositories.
Our final project list contained 91 open source IoT repositories
to analyze. For five repositories that use custom labels (e.g.,



“problems”, “kind/bug”, “type : bug”), we manually added
their labels to our search keywords. In the end, we collected
5,565 bug reports from the 91 IoT repositories.

Our subject IoT repositories together cover all the layers of
the IoT systems’ architecture depicted in The most
popular programming languages among the subject reposi-
tories are Python (21%), Java (18%), JavaScript (17%), C
(13%), and C++ (13%). A few of them use other programming
languages such as Go, Ruby, and C#. The selected repositories
are also diverse in terms of the number of stars and forks
they have. In February of 2020, 32% of our subject GitHub
repositories had more than 500 stars, 40% between 50 to 500
stars, and 28% between 10 to 50 stars.

Labeling. For each bug report in our dataset, we created a
JSON object containing failure(s), cause(s) of the failure, and
location(s) of the faulty code. Failure refers to any observable
unexpected behavior of the system that is against the correct
functionality of that system [22f], [23]. To explore the causes
of the failure, we did RCA on each bug report using the
five whys technique [24]]. Based on this technique, multiple
causes can contribute together or at different levels to a visible
failure in the system. Following this approach, we started from
the failure and repeatedly asked “why” until we reached the
root cause of the problem. In the case of software failures,
root causes are often developers’ faults in the design or
implementation of the IoT system. To label the location(s)
of faults, we used the architecture defined in Section [lI| as our
reference.

Bug reports were manually labeled by the author(s) individ-
ually following the open coding procedure [25]. We followed
an iterative process for labeling where in each iteration,
we randomly sampled new instances from the collected bug
reports and labeled them. After each labeling iteration, all po-
tential conflicts in labels between the author(s) were resolved.
We continued this process until bug categories reached a state
of saturation where no new category appeared [26].

We also flagged and discarded issues and PRs that could not
represent a bug or a bug-fix such as enhancements or how-
to-use questions. We examined the entire discussion among
developers, as well as the fix commit data (e.g. the commit
message and the code diff) to label each bug report. At the
end, we labeled 323 bug reports.

Table I: Interview Participants

ID  Role

Pl Software and hardware lead
P2 Hardware lead

P3  Software dev

P4 Software dev

P5  Software lead

P6  Software dev

P7  Software and hardware dev
P8  Software lead

P9 Software lead

ToT Systems Type
Full-stack
Hardware
Full-stack
Middleware
Full-stack

Cloud

Full-stack
Full-stack

Cloud

Projects Domain
Smart home
Education 15

ToT Dev Exp (yr)

Dev Exp (yr)
13

Smart home 5
Smart city 3
Smart home 20
Not domain-specific 10
Smart home 20
Smart home 11
Not domain-specific 20

Bewwlwsu

B. Interviews

While manual analysis of bug reports and developers’
discussions provided useful insights into the characteristics of
IoT development, there was still a possibility that our analysis
was restricted to only code-level issues and we might miss

high-level problems of IoT developers. To mitigate this issue,
we conducted semi-structured interviews with IoT developers
to reveal new bug categories and collect their development
challenges to complement our results.

Participants. We used purposive sampling [27] to recruit de-
velopers with adequate experience in developing [oT systems.
To collect interview participants, we employed GitHub as it
provides a diverse pool of developers and their contributions
to different projects. We obtained valid email addresses of
only the top three contributors to popular open-source IoT
repositories as our candidate interviewers.

We contacted candidates through emails and conducted
interviews until we reached data saturation, where we had
sufficient data to replicate the study and further data collection
is unnecessary [26]]. We relied on this widely-applied method-
ological principle to decide when to stop interviewing [28]],
[29] as it is also used in other qualitative studies in software
engineering [30], [31]. We interviewed people with different
development backgrounds and experiences before deciding
about the data saturation to consider variability in experimental
results across different populations [32].

Table |I] presents all nine interview participant’s experience
and field of expertise in IoT development. For a high-level
picture of their general development background, the lowest
value is three years and the highest value is 20 years (avg=13,
sdv=6.4). In terms of IoT development experience, the lowest
value is three years and the highest value is 17 years (avg=6.4,
sdv=4.6). Participants’ IoT development experience covers all
sections of IoT systems spanning from hardware to middle-
ware, cloud, and end-applications. In addition, their projects
cover a variety of domains such as smart home and Industrial
IoT (IIoT).

Protocol. Since our goal for conducting interviews was to be
open to new data, and we did not have the definitive structure
of bug categories, we conducted interviews following a semi-
structured approach. Interviews started with some questions
about participants’ IoT development background and their
field of expertise in IoT. This information could help us
improvising insightful questions during the technical section
of the interviews. The technical section had a combination
of both open-ended and specific questions about different
categories of bugs and challenges in IoT development. Our
strategy was to start with open-ended questions to avoid
biasing participants toward our findings, and then we gradually
shifted to more structured and predefined questions during the
interview process. With participants’ consent, we recorded the
audio and video of all the interviews for later analysis. All the
interviews were conducted remotely through Zoom. Interviews
took around 43 minutes on average ranging from 31-70
minutes. We used Descript, an automated speech detection
tool, to generate transcribes of the interviews and we did
manual corrections afterward in case of any mistakes in the
automatically generated transcripts.

Analysis. As the primary objective of this study is to generate
theories from the experiences of IoT practitioners instead of



using pre-conceived theories, we followed the grounded theory
methodology [33]] to ensure the quality of the generated theory.
Our analysis steps consist of iteratively (i) collecting qualita-
tive data from the interviews (ii) analyzing the interview tran-
script line by line and assigning labels (tags) to distinct units
of meanings, and (iii) identifying emerging categories and
relating categories to their subcategories while continuously
comparing all the previously analyzed data with the emerging
theories. These steps were repeated for each interview. On
average, we extracted 18 tags per interview. Potential conflicts
in the labels were resolved after each iteration by the authors.

C. Validation Survey

In order to make sure that our findings are generalizable,
comprehensive, and representative, we involved more IoT
developers through an online survey.

Participants. We sent our online survey to developers that
have made at least three contributions to the collected IoT
repositories in and to IoT developer groups
in social media platforms such as Linkedin and Facebook, and
online forums. Our survey was online between 19 July and
19 August 2020. The survey, as distributed to participants, is
available in our artifact package [|19].
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Figure 2: Development backgrounds of the survey participants

Protocol. The survey has three sections. In the first section,
we collect participants’ background in IoT, and in general
development, which is depicted in The second
section concerns the challenges of developing IoT systems
with questions aimed at correlating our findings with the
participants’ own experiences.

The third section is about the frequency and severity of
bug categories based on participants’ previous experience in
IoT development. At the end of each section, there are open-
ended questions to allow them to share their comments about
our results and mention new categories.

Analysis. Our survey was completed by 194 respondents, with
a response rate of around 10% for valid responses. We received
95 comments through the open-ended questions sections. All
of the survey respondents’ comments are coded and analyzed

following the same procedure discussed in [subsection III-B

IV. FINDINGS: 10T BUG CATEGORIES (RQ1)

In this section, we describe our findings regarding IoT bugs.

A. Taxonomy of Bugs

We used all the tags collected by RCA of the bug reports in
our dataset, to build a taxonomy of bugs in IoT systems. As
our motivating example illustrates IoT bugs can be
multi-faceted and manifest at different layers and locations.
Therefore, we designed our bug taxonomy to accommodate
all these bug characteristics. Considering various approaches
suggested by Usma et. al. [34] for taxonomy construction,
we followed the approach suggested by Kwasnik [35] as IoT
bugs are multi-faceted and relatively a new and unexplored
concept. Following their approach, we first defined facets of
our classification as all failures and locations of failures. Then,
we analyzed all bug reports based on these facets and built a
hierarchical taxonomy that accommodates all the dimensions.

After we built the initial version of the taxonomy, we used
the data from the interviews and the survey to complement
and enhance the taxonomy. We reviewed all previously tagged
data and re-tagged them after each alteration of the taxonomy.
depicts our IoT bug taxonomy. Next, we describe the
major bug categories in our taxonomy. We will use specific
bugs as examples for each category. All these bug examples
are available in our dataset, which is available online [19]].

IoT Device. This category of taxonomy covers bugs that are
related to IoT device hardware and firmware.

Device hardware: Bugs in this subcategory are related to
the physical aspects of IoT devices. Examples include bugs
related to wiring issues, device pin status issues, or issues
with physical sensors and actuators of the device. For example,
PEDALINOMINI/34 is related to the device not differentiating
between single and double presses of a hardware button. Other
common bugs in this category are those that are linked to
the device’s limitations in memory, power consumption, or
processing capacity. One such instance provided by P; as he
described a scenario where a device on low battery generated
incorrect data to the cloud. There are various similar cases
in our collected bug reports where the low battery of the
device or the removal of the power source of the device causes
failures. In addition, heavy calculations and processing on the
device (HOMIE-ESP8266/575, interviewee Pg) or running out
of memory (ZWAVE2MQTT/141, interviewee P;) are other
examples of bugs related to this category. Another example
of known hardware issues of IoT devices is the timing issues
of Raspberry Pi devices [36], which is also mentioned by an
interviewee (Pg).

Device firmware: Firmware bugs consist of three subcat-
egories. The first pertains to device firmware unexpected
exception and hang issues. The second sub-category includes
issues related to the configuration of the IoT device, which
can be specified as an external instruction sent to the device
for a specific purpose. This type of bug usually happens in the
early stages of introducing an IoT device to the IoT network.
Each device has to be configured properly in a way to be



compatible with other hardware or software components and
also be able to communicate with others on the network. Issues
associated with configuring the device with WiFi credentials
or with configuring the device with the correct firmware
version are some common examples here. The third and most
common sub-category is the firmware upgrade issue. There
are various cases where poor practices for handling over-the-
air (OTA) updates of the device firmware, stale updates, or
updating the device firmware with the wrong binary have
caused failures of the IoT system. In some cases, the stale
update issues are related to device configuration issues as in
WTHERMOSTATBECA/54, where the device needs to be re-
configured with WiFi credentials after each firmware update,
otherwise, future firmware updates would be stale.

Compatibility. When a bug occurs only on a specific type of
device, communication protocol, or third-party component, it
falls under the compatibility category. For instance, a common
device incompatibility issue happens when certain devices
represent their telemetry data in different formats, leading
to the other components not being able to process their
data. Other common bugs are linked to compatibility issues
of certain combinations of sensors and development boards,
e.g., incompatibility of the DHT temperature sensor with the
ESP32 microcontroller in MONGOOSE-OS/277. Issues with
the interoperability of different protocols is another case. One
example is MAINFLUX/1079, which is related to the interop-
erability between the HTTP and MQTT protocols. A common
bad practice in [oT development related to these issues is
developing protocol-specific or device-specific code. For in-
stance, in DEVICE-OS/1938, the IoT platform relies on event
components to report what protocols each event is intended
for, in order to be able to run different functions for each
protocol individually. However, sometimes developers have no
other choice but to follow this error-prone approach, just to
bypass the limitations of third-party devices. For instance, (P;)
mentioned a case where the incompatibility of the Raspberry
Pi and some types of sensors had forced their developers
to implement custom logic for the communication of these
devices. Developers had to switch between Raspberry Pi’s
default implementation and their own custom implementation
based on the sensor type, leading to many issues.

Communication with IoT devices. Bugs that are related to
the communication of IoT devices with each other or with
other entities fall under this category. Generally, there are two
types of bugs in this category:

Device Connectivity: Some of the connectivity issues are
related to the network that the device relies on for connecting
to the internet. One example is when the device cannot
discover a valid and available network such as a local access
point and therefore loses access to the internet. As it is
also mentioned by Py “When the device location is changed
to another room or another building, the device has to be
reconfigured for the new access point.” In addition to the
network discovery, not handling a network reset, or unstable
and unreliable networks are other common issues that can

lead to failures. However, Sometimes IoT devices fail to
establish a valid connection to the gateway or remote cloud
servers despite a valid network status. Failure in reconnecting,
connection refreshing, and ensuring such connectivity failures
do not cause propagated failures in other components are
other pitfalls that IoT developers often deal with. Additionally,
unexpected disconnection or connection closure issues are
other manifestations of bugs in this category. Two interviewees
(Ps and Pyg) believe that connectivity bugs are the most serious
and challenging bugs. As Py states “the weakest part of our
IoT platform is to communicate with loT devices”

Data and Messaging: This category includes bugs that
are related to data and message sending in the IoT system.
Typically, messages are either commands that are sent to IoT
devices via the cloud, or they are telemetry data that are
received from IoT devices in the edge, cloud, or applications.
Some bugs cause failures in delivering these messages from
the sender to the receiver. Some other messaging bugs are
related to the timing of messages. For instance, various re-
ported bugs are related to the rate and order of the messages.
Additionally, some bugs are linked to the payload that is being
delivered through the messages. In some cases, payload size or
format are the causes of failures. There are also cases where
there are violations of payload integrity by messages being
truncated or overwritten.

Cloud/Edge Services. This category includes bugs that are
related to the services delivered by the remote cloud servers
or gateway devices in the edge layer.

Device Management: To monitor and control each IoT
device remotely, devices should be connected to a cloud server
or a hub device, and report their status while listening to
user commands. Device management (DM) issues include
problems that cause failures in this process. The first class
of DM issues happens in the stage of initializing the IoT
device in the cloud or edge systems. One type of device
initialization (DI) issue is when the IoT device is not properly
or uniquely identified by the cloud or edge components and
therefore causes further failures in the subject IoT system.
Besides, if the IoT device fails to provide a recognizable
identity and valid permissions to the cloud or edge, it would
not be allowed to use remote services. Some examples of
device registration and provisioning bugs are duplicate device
certificates, issues with auto-provisioned devices, or failure in
retrieving data from the provisioning service. Another class of
DI bugs is problems with binding, association, and pairing of
IoT devices. There are several cases where bugs are introduced
to the IoT system just because devices are grouped together
(such as devices in one room), due to not properly handling
the association of a sensor device with a physical object.
There is an example mentioned by one of our interviewees
(Ps) where two switches were associated with one lamp and
only one switch was working due to issues with addressing
multi-instance devices with labels. The second class of DM
issues is related to problems with monitoring the status of IoT
devices. One type of device status is the connectivity status,
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to check whether the device is online, which is also known
as the heartbeat check. Some examples of bugs in this type
are wrong device heartbeat rate, showing a lost connection as
live and vice-versa, or not notifying other components when
the device goes offline. Failure in retrieving the device status
such as color and brightness for a light bulb, showing the
status incorrectly, or failure in updating the device status are
some examples of these types of issues.

Automation: This bug category is related to automation
services that IoT cloud or edge platforms provide and it is
classified into the trigger, condition, and execution issues. Rule
trigger defines a condition under which a rule is initiated. Trig-
ger failures usually cause a rule not to become triggered when
it should be (SMARTHOME/5578) or vice-versa (HOME-
ASSISTANT-CONFIG/2). Rule condition is the statement that
should be checked when the rule is triggered. Examples of
the rule condition issues are problems in retrieving the device
state to check the rule condition since the condition usually
relies on device latest status (TESLA-API/43). Issues in the
execution of the rule action are the last and the most prominent
automation issues. Some examples of these issues are crash
after rule action execution, issues in handling asynchronous
behavior and threads in rules, and having problems with the
output of the rule being unpredictable or nondeterministic.

General Development. This category captures common de-
velopment bugs. Some common issues are problems with
installing, compiling, or building a project as well as un-
expected crashes or performance issues in the IoT project.
The general development category also includes bugs in the
authentication or authorization process. One of the IoT-specific
authorization issues are problems with generating, signing,
or maintaining the certificates that devices have to present
for using cloud or edge services (AZURE-IOT-SDK-C/657).
Other sub-categories of general development bugs are UI-
related, usability, or external issues.

B. Characteristics of Bugs

Root causes. Figure 4| shows the distribution of bug categories
and root causes. The most frequent categories of bugs are
general development issues (48%), device management issues
(29%), and messaging issues (19%). In terms of root causes,
after general software programming faults (SWP) such as
syntax issues, semantic programming faults (SEM)

are the most dominant root causes of the bugs. Some
semantic mistakes that [oT developers make are wrong control
flow, functionality logic, or return values. However, some of
the semantic faults are related to the automation logic of the
IoT system, such as logical faults in automation apps, which
are also discussed in recent studies [37].

The next frequent root cause is dependency faults (DEP),
where developers use wrong versions of the software or
firmware libraries, tools, devices, or protocols.

One of the most important root causes often leading to
hardware, connectivity, and messaging issues are timing faults
(TM). Improper handling of time-outs or rate of operations,

SWP HWP SEM CNF DEP MEM CON EC TM

Device:
Hardware 5 4 1 1 1 2 1 1 5
Device:
Firmware 2 4 2 5 6 4 4 1 2

Communication:
Connectivity

6 2 3 7 6 3 3 1 11

Communication:

15 7 10 1 5 3 3 7 11

Messaging

Cloud: DM 25 3 19 13 7 3 3 8 13
Cloud:

Automation 2 0 8 1 0 0 2 0 0

Compatibility 4 1 7 6 6 1 1 2 4

2 10 25 27 8 4 14 5

Figure 4: Distribution of bug categories (vertical) and root
causes (horizontal)
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wrong time-out values for connection closures, or not handling
asynchronous behaviors are among timing-related root causes.

Some faults that are more specific to hardware programming
such as interrupt handling, are assigned to hardware program-
ming faults (HWP). Faults in handling exceptional cases (EC)
are another root cause for IoT bugs that include mistakes in
handling corner cases (large or out of range data), not handling
errors properly, or not handling changes of the requirements
or changes in third-party components. Finally, the remaining
root causes are related to memory faults (MEM), concurrency
faults (CON), and configuration faults (CNF).

Correlations among bug categories. During our analysis,
we observed some frequent patterns of certain bug categories
appearing together more often. To study the correlations
between bug categories, we used Lift [38]], a statistical metric
introduced by Han and Kamber that computes the probability
of two categories appearing together. For each pair of bug cat-
egory, a lift value of more than 1 shows a positive correlation,
and a lift value below 1 reveals a negative correlation.

Table shows the lift values of correlated bug cate-
gory pairs. The top correlated bug categories are [hardware,
firmware], [hardware, connectivity], and [firmware, connectiv-
ity]. This correlation analysis, besides helping IoT developers
in debugging, gives insight into how intertwined IoT bugs can
be in practice.

Frequency and severity of bugs. We asked our survey
participants whether and how frequently they face each bug
(sub)category and what are their perceived severity based on
the impact on the IoT system and fixing-time. Table [ITI] shows
the results. All the bug categories in our taxonomy have been
faced by at least 82% of IoT developers, which shows the
bug categories are representative of the real-world bugs in
IoT systems. Connectivity issues are the most frequent and
severe bug category with more than 97% of IoT developers
have faced it at least once.



Table II: Bug Categories with Positive Correlation

Bug Category Bug Category Lift Value
Device: Hardware Device: Firmware 3.86
Device: Hardware Communication: Connectivity 2.57
Device: Firmware Communication: Connectivity 2.25
Compatibility Cloud: Device Management 1.84
Compatibility Communication: Messaging 1.44
Communication: Messaging Device: Firmware 1.42
Cloud: Device Management Automation 1.38
Cloud: Device Management Device: Hardware 1.28
Communication: Connectivity =~ Communication: Messaging 1.22
Communication: Connectivity — Compatibility 1.14

Device-related issues are the least experienced bug cate-
gories, but they are the most severe bugs after connectivity
issues. According to the survey respondents, automation issues
are the least severe bugs, however, more than 91% of IoT
developers have faced them at least once. The compatibility
issues are the least frequent bugs according to IoT developers’
experiences.

Regarding sub-categories, device initialization issues are the
most frequent and severe device management bugs since about
95% of 10T developers having dealt with them.

Also concerning the device status issues, bugs related to the
status of connection have shown more frequency while bugs
related to the status of device properties are more severe based
on survey respondents. Among device-related issues, bugs that
are related to the constraints of IoT devices have the most
frequency. The device firmware exception issues are the most
severe device-related bugs. Concerning general development
issues, installation issues are the most frequent and severe
bugs.

Taxonomy augmentation. Regarding IoT bugs, we collected
79 tags from interviews and 18 tags from the survey com-
ments. Device binding issues, performance issues, and third-
party compatibility issues were not discovered before the
interviews and were added by interviewers’ experience. The
survey comments did not reveal any new information to be
added to the taxonomy. However, the extracted tags, from both
the interviews and survey, helped us to characterize each bug
category by providing contextual data.

V. RQ2 FINDINGS

In this section, we provide our findings regarding the
challenges faced by IoT developers.

A. Testing and Debugging Challenges

Relying on access to the real device. According to seven
interviewees, several GitHub issues (DEVICE-OS/1871, MY-
CONTROLLER/485, TESLA-API/43), and 74% of survey
participants, IoT developers rely on access to devices to test
and debug their [oT system, by tasks such as manual reset or
device output monitoring (P23 7).

In some scenarios, devices are out of reach or in hard-
to-access locations thus making remote debugging more es-
sential. Four interviewees believed that practical simulation
solutions are required for better IoT testing and debugging.

Table III: Survey Results: Bug Taxonomy

Bug Category Have faced Frequency Is Severe
Frequently ~ Sometimes Rarely

Device: Hardware 82.50% 30.30% 39.06%  30.64% 43.61%

Device: Firmware 85.75% 24.20% 44.48%  31.32% 42.78%

Communication: Connectivity 97.22% 50.29% 38.29%  11.42% 62.78%

Communication: Messaging 92.22% 33.74% 36.14%  30.12% 40.56%

90.93% 25.06%
20.00%
23.88%

24.53%

46.43%
44.24%
40.00%
39.44%

28.51%
35.76%
36.12%
36.03%

40.75%
32.22%
36.11%
38.89%

Cloud: Device Management
Cloud: Automation 91.67%
Compatibility 86.11%
Dev 87.89%

As Ps, a middleware developer stated “loT device vendors
do not provide a mock of their devices, and we have to do
reverse engineering on the actual hardware devices rather
than working with the simulated ones.” Also as Psgg stated,
current simulation solutions in IoT are not mature enough and
they are only valid for limited scenarios, such as testing high-
level controllers or small unit tests, rather than being suitable
for all levels of testing such as system testing.

Some relevant challenges mentioned in the survey are
affording to have all types of IoT devices, complex custom
logic for effective IoT device mocking and simulation, and
setting up test environments with loT devices.

Fault localization. According to eight interviewees, nine
survey comments, and also half of the survey participants,
fault localization is a barrier due to lack of transparency in
the operations of IoT systems. As P; mentioned “there is no
environment that logs everything.” One contributing factor to
this is the difficulty of tracing executions of numerous external
components in IoT systems. P; mentioned using open-source
solutions just to be able to log everything.

Another factor that impacts fault localization is the existence
of hidden failures.

As an example, P; mentioned “If’s hard to recognize on
the app that the temperature the device is reporting now is
for several minutes ago.” Besides, P,4 mentioned examples
of failures that only show up after the device has worked for
a specific amount of time (five minutes for P, several hours
for P4), which is also observed in GitHub issues (DEVICE-
085/1926, ZWAVE2MQTT/141, VSCP/207). This issue makes
IoT failures more unpredictable and may hide developers’
faults. Another issue toward fault localization is the lack of
tools and developers’ support. For instance, P3 inspects device
messages in bit-level by monitoring communications using
Wireshark. P,, as a hardware platform developer, said “Since
there is no feedback of errors or corruptions from devices,
we’ve added some LEDs to them to track if something is
working in the device level or not.”

Reproducing IoT bugs. In addition to observing several
GitHub discussions (DITTO/414, TESLA-API/68), we col-
lected four tags from interviews, and three survey comments
regarding the challenge of reproducing IoT bugs. Besides the
already mentioned factors which harden bug reproduction,
such as limited access to devices or hidden failures, some
bugs only happen with a specific device setting or with
certain environments of the IoT system. IoT developers cannot
reproduce these bugs unless they have exactly the same setting
or environment. For instance, a survey comment indicated



“It’s hard to reproduce some memory-related bugs in X86
devices when they have ASLR enabled.” Also, we observed
other examples such as TEMPERATURE-MACHINE/13: “I
can reproduce the bug with the help of ice packs taken at
three different temperatures from my freezer.”

Combinatorial explosion. In addition to all the evolving
components in traditional software, such as libraries and
operating systems, there are more changing factors in IoT
systems. Hardware devices produced by various manufacturers
with different standards, device integration middlewares, and
communication protocols are some examples of these extra
changing factors in IoT. With all these components releasing
new versions at a specific rate, a combinatorial explosion
problem is likely to happen when developers want to cover all
possible combinations with test cases. One relevant statement
is “I do not have all kinds of bulbs, remotes, and sensors, so
I could be completely wrong!” in a GitHub discussion (PY-
TRADFRI/135). We could collect eight tags come from four
interviewees and two tags from survey comments regarding
the challenge of combinatorial testing. As one example, Py
said “We have to test with 10 or 15 different devices each
time”. Also, 80 percent of survey respondents agree with
the combinatorial explosion as a testing challenge for IoT
developers, and Pg mentioned it as the most severe testing
challenge.

Testing and debugging edge-cases. Covering large-scale
scenarios (e.g. too many devices) and exceptional cases (e.g.
temperatures below zero) add to the test coverage obsta-
cles. This challenge is mentioned by four interviewees, three
survey participants, and observed in several GitHub discus-
sions (DEVICE-0S/1926, TEMPERATURE-MACHINE/13).
As one example, Py said “We should put effort to write
proper tests against concurrency issues since we should be
able to handle 140,000 HTTP requests per second because
our IoT system is deployed in different cities.” Additionally,
this challenge is the most experienced testing challenge (83%
of respondents).

Immature testing culture. Figure [5] shows an over-reliant on
IoT developers for testing as 64% of participants mentioned
developers are the main testers in their IoT project.

As Pg, a developer of a popular IoT project with near 7K
stars, stated “We do not have a QA team. it’s up to developers
to do testing, either manually or writing automated tests.”
Often, software developers do not have the skills to test the
hardware side. Py, a software developer of an IoT platform
with 1.5K stars, told that the bottle-neck of their IoT platform
is testing the hardware side since they do not have sufficient
knowledge for tools and practices of hardware testing.

As Figure [5] shows, IoT testing highly depends on manual
tasks as only 5% of participants reported testing completely
automatic. Also, during interviews, four interviewees men-
tioned manual approaches for IoT testing. According to the
survey respondents, the most adopted IoT testing approach is
hybrid strategies. An example of such an approach is described
by one IoT developer “Services which don’t interact with

How testing is done?

Manual
Hybrid
Automatic 5%

27%
68%

‘Who has the main
responsibility for testing?

Developers 64%
QA team or testers
Third-party testing services
Clients

No testing

Figure 5: Survey responses about testing in IoT projects.

devices directly are tested automatically, but checking the
entire platform with devices requires manual testing.”

B. Heterogeneity

Device and protocol fragmentation. Some of the IoT de-
velopers reported developing separately for each device or
protocol in order to fulfill interoperability (P,.s, Pg). For
instance, P; stated he has to develop a distinct adapter for
talking with each particular device. He mentioned "There is no
guarantee that something that works with brand A also works
with brand B." On the other hand, P¢ noted that their platform
is restricted to certain protocols instead of devices. Other
developers mentioned fragmentation challenges by pointing
out fragmentation on the same platform and time to implement
new technologies. In addition, the majority of the interviewees
(seven out of nine), 11 survey comments, and near half of the
survey respondents find integration with a new IoT device or
communication protocol challenging.

Third-party breaking changes. Third-party changes chal-
lenge is mentioned by all interviewees (23 tags) and is
agreed by 63% of survey participants and also there are
several comments in the survey about it (eight tags). Three
interviewees stated that third-parties make breaking changes
without prior notice. Also, Psg mentioned examples where
the third-party system stopped supporting a device or a service
which caused breakage in their IoT system. Four interviewees
(P245.5) explicitly mentioned that it’s hard to keep pace with
all the rapid changes from various third-parties such as device
manufacturers.

Diversity of technologies, backgrounds, and requirements.
Challenges posed by the fundamental diversity of IoT tech-
nologies are the most repeated challenges among both inter-
views (30 tags) and survey comments (25 tags). Also, it is
agreed by 60% of survey respondents. Several participants
mentioned that IoT development requires diverse development
skills such as hardware programming and knowledge in deal-
ing with network protocols.

Commonly, developers do not go through this learning
curve: “developers tend to use protocols which they are famil-



iar with but sometimes better solutions exist and developers
do not know/use them.”

P>37¢ and several survey comments mentioned that it
is hard to understand low-quality documentation of certain
device manufacturers and interpret complex response payloads
from particular devices. P,3 and two survey comments also
mentioned that user requirements, as well as users’ back-
grounds and skills, can be very disparate and it’s challenging
to develop a generalized IoT system that can support all
possible use cases. For instance, P, mentioned that they had
to include more pins on their hardware and add support for
obscured sensors to cover all user requirements. Other chal-
lenges are large search-space for selecting compatible devices
or libraries (Ps73g), and dealing with diverse regulations and
standards (Psg, and three survey comments).

C. Other challenges

Security. As the survey results suggest, more than half of the
IoT developers are not confident about the security of the third-
party components, such as operating systems and libraries,
used in their IoT system. Also, from a total of 14 participants
who mentioned security-related challenges, six of them posed
it as the most important challenge. Moreover, 66% of IoT
developers find security a complicated task. Our interview
participants mentioned security issues rooted in the device
firmware (P;34), network protocols (P;g), and automation
rules (Pg). One of the main challenges, also mentioned by P,
is generating and storing access tokens within IoT devices that
have processing and storage limitations. Similarly, near 60%
of IoT developers think that device constraints make security
tasks challenging. Another emerged theme from our data is
related to the challenge of end-to-end security, from the IoT
device to the cloud. Some (Pgo) believe that the security of
the local communication between the device and IoT gateway
is usually underestimated while it can be highly insecure.
As Py argued, “fo make the development of the IoT system
faster, developers don’t consider the security of the local
network”. Other challenges mentioned are the complexity of
the certification process, supporting different use cases while
following security protocols, and existence of various attack
surfaces.

Releasing updates for IoT devices. Half of the interviewees
believe that releasing software upgrades or security patches
for already shipped devices (Psg) is inevitably challenging.
Six IoT developers in the survey made comments such as
“getting critical updates installed on already sold devices”
or “firmware updates in large deployments” regarding update
challenges.

Programming for constrained devices. 63% of the partic-
ipants agreed that device constraints make IoT development
harder. Most IoT developers struggle to design and implement
software in a way to consume less processing power and
energy. Device limitations in different layers have also been
mentioned by our interviewees (P23¢3).

Handling failures. An interesting theme that 62% of our
participants agreed with is the challenge of handling failures
in IoT systems, in a way to avoid losing data and making
the system unavailable. As P45 and five IoT developers from
the survey described, developers have to design the system to
be tolerable to failures and data losses. Handling a backlog
of sensor data in gateways or constraint devices in case of
disconnections (Pg, ZWAVE2MQTT/141), and reducing mean-
time-to-repair (MTTR) on already shipped devices are some
of the mentioned reliability challenges.

VI. DISCUSSION

IoT testing solutions are not adopted in practice. Various
IoT testing tools and methods [39] [40] have been proposed
in the literature, such as device simulators [41] and emula-
tors [42], IoT unit testing frameworks [43[], [44], and IoT
testbeds [45]]. However, none of them seems to be adopted
by IoT developers as only 9% of them mentioned using
third-party services as their main testing approach. Besides,
although IoT test automation frameworks exist [41], IoT
testing is still carried out in a manual and ad-hoc manner,
as 95% of the IoT developers in our study perform manual
testing practices. Also, as it is mentioned by Psg, device
simulation does not support simulating all types of devices.
One possible future direction is having device simulators and
emulators specifically crafted for each IoT device individually
to virtualize their characteristics and bypass the need for the
presence of the actual hardware device during testing. Also,
as the importance of combinatorial testing in the context of
IoT has been discussed previously in the literature [46], more
focus is needed on combinatorial testing tools that consider
the heterogeneous nature of IoT devices and protocols.

Lack of device-level monitoring tool support. Investigating
the log data of IoT devices is a common debugging task for
IoT developers. This task becomes even more important as
the device status issues are among the most frequent bug
categories. This bug category has appeared in around half
of the bug reports in our dataset, and most IoT developers
reported that they need to log communications or internal
executions of the device as part of the debugging process
for these bugs (Pj2347). There is no universal tool that
receives log data from all types of devices, and developers
often have to manually employ naive approaches to monitor
device status and communications, such as serial print for each
device separately (P,7) or using general-purpose tools like
Wireshark (P37). Existing logging solutions to track devices
are believed to be inefficient as their limitations were discussed
by several IoT developers. One IoT developer best mentioned
it as “even if some devices provide log libraries and tools, they
should be manually aggregated or traced from each component
separately to track an issue.”

Fragmented and ever-changing ecosystem of IoT. One of
the most serious challenges of IoT development nowadays is
the rapid obsolescence of hardware devices. As several IoT
experts and blog posts [47]], [48|] describe it, the pace that IoT



devices get obscured and stop being supported by the providers
is increasing. New updates for IoT devices often make the
older devices unusable while they also break IoT developers’
implementations. Within this ever-changing ecosystem of IoT,
developers have to struggle with maintaining their device-
specific or protocol-specific code. IoT developers, not only
have to afford all versions of devices to keep up with these
changes but also they have to allocate much of their devel-
opment effort into migrating from one version or ecosystem
to the other. As this issue targets both IoT consumers and
developers, in 2019, some countries put regulations on the
minimum time that IoT providers can release updates after
the device is bought [49]. Furthermore, some solutions such
as contract-based testing were suggested by interviewees (Ps),
to ensure continuous compatibility with third-party systems.
However, none of these methods can be a long-term and
universal solution as they are still dependent on the contracts
and regulations in place.

A. Threats to Validity

Internal validity. One internal threat to the validity of our
study, similar to most qualitative studies, is researchers’ bias
in coding qualitative data. We mitigated this risk by having
all authors of the paper involved in the tagging process and
discuss any discrepancies in tags for all pieces of qualitative
data from various sources (bug reports, interview transcripts,
survey comments). For interviews specifically, we eliminated
any personal preference on our results by triangulation; each
piece of meaningful data from interview transcripts was tagged
by one researcher who conducted the interview and one who
was not present in the interview session.

External validity. One external threat to the validity of
our study is the generalization of studied IoT repositories.
We minimized this issue by studying a large number of
repositories (91 repositories) selected from all layers of IoT
systems. Another risk to the validation of our study is the
interview and survey participants not being representative
of all IoT developers. However, we minimized this risk by
recruiting interview and survey participants with different IoT-
related field of expertise, years of experience, companies, and
domains. In addition, our survey is filled out by 194 IoT
developers with a diverse distribution of skills and experiences.

All our study material, including the bug dataset and inter-
view and survey questions, is available online [[19].

VII. RELATED WORK

Bugs and challenges of IoT systems. Although a few
previous studies have acknowledged some categories of bugs
in IoT systems [5], [8], [O, no study is concerned about
categorizing all types of real bugs in IoT systems using
a systematic approach. In a recent 2020 study [4], certain
peculiarities of open-source 10T repositories were analyzed
via examining how developers contribute to IoT repositories.
However, this study does not consider bugs and experiences of
IoT developers to reach conclusions about the characteristics
of IoT development.

A growing body of literature has investigated issues and
design flaws that cause safety and security violations in IoT
systems as well as security challenges in IoT [50], [S1]. More
specifically, in smart home ecosystem, security bugs related to
the device firmware [52]—[54], communication protocols [55]—
[57], smart apps, and safety of their interactions [37]], [58],
[59], as well as interactions of different components of IoT
systems [17] have been studied. There exist taxonomies for
describing characteristics of IoT systems with respect to
security and privacy concerns [60] [61]]. However, these papers
do not present their taxonomy construction process, and they
are focused on a different goal, namely security requirements
and attacks.

Also several studies have investigated challenges of testing
IoT systems [39], [46], [[62]], [63]. Various solutions for IoT
testing have been proposed based on e.g., model-based test-
ing [|62]], IoT mutation operators and test event generators [64]],
[65], and testing tools [39]. Also, tools and methodologies
have been proposed to aid IoT developers in developing of
IoT systems [66]—[68]].

The challenges of developing IoT systems have been dis-
cussed from different perspectives [3[], [7], [13]]. A previous
study investigated the challenges of novice IoT developers to
see what development tasks are more challenging for them [6]
and developed a tool to help the novice developers [68]]. How-
ever, no study has tried to study IoT developers’ challenges
systematically by interviewing and surveying IoT practitioners
in the field.

Bug mining and developers’ challenges. Although mining
IoT repositories has not received any attention in the literature,
a growing number of studies have employed mining of soft-
ware repositories or issue trackers to characterize bugs in Ma-
chine Learning systems [[10]], [69]—[71]]. Some prior researches
have followed this approach to identify bug categories in
Blockchain systems [[11]], Big Data computing platforms [72],
web applications [73]] and service compositions [[74]]. In addi-
tion, developers’ challenges have been investigated in different
contexts such as mobile app development [12f], and Blockchain
development [75].

VIII. CONCLUSIONS

In this paper, we proposed the first bug taxonomy for IoT
systems. We also presented a series of categories of challenges
in these systems with a qualitative study. Our findings can help
both researchers and practitioners in understanding real-world
pain-points of IoT development in the wild and designing new
techniques and tools. Our findings shed light on the most
frequent and severe IoT bugs, their correlations, and their root
causes, and thereby allowing these faults to be avoided or
detected early in the development of IoT systems.
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